米国におけるテクニカル・ライティングの設計と実施における諸問題

三田村照子
カーネギーメロン大学教授
Language Technologies Institute
Carnegie Mellon University
Outline

• Introduction
• History of CL & Applications
• Designing a Controlled Vocabulary and Grammar
• Deployment Issues for CL
• Evaluating the Use of Controlled Language
What is Controlled (or Simplified) Language (CL)?

• A form of language usage restricted by grammar and vocabulary rules
• No single “controlled language” for English
• Controlled language can be used:
 – solely as a guideline for authoring
 – with a checking tool to verify conformance
 – in conjunction with machine translation
Types of Controlled Language

• **Human-oriented CL**: to improve text comprehension by humans
 (for technical writers and translators)

• **Machine-oriented CL**: to improve “text comprehension” by computers
 (for CL checkers or MT systems)
Examples of Writing Rules

• *Do not use sentences with more than 20 words*
• *Do not use passive voice*
• *Do not make noun clusters of more than 4 nouns*
• *Write only one instruction per sentence*
• *Make your instructions as specific as possible*
• *Use a bulleted layout for long lists*
• *Present new and complex information slowly and carefully*

Q: Which rules can be checked automatically?
History of CL & Applications

Roots of CL

- C.K. Ogden’s “Basic English” (1930’s)
 - 850 basic words
 - an “international language”, foundation for learning standard English
 - never widely used
Roots of CL [2]

• Caterpillar Fundamental English (CFE) - 1970’s
 – Non-technical vocabulary and grammar
 – First version had only 850 terms
 – For non-native English speakers
 – Abandoned after ~10 years:
 • insufficient for complex writing
 • CFE difficult to train and enforce
Examples

Non CFE: “Enlarge the hole.”
CFE: “Use a drill to make the hole larger.”

Non CFE: “The brake components must be matched during installation.”
CFE: “The brake parts with same numbers on the lower ends of the brake shoes must be installed together.”
History of CLs

Ogden’s Basic English

Caterpillar Fundamental English (CFE)

Smart’s Plain English Program (PEP)

• Clark
• Rockwell International
• Hyster

Caterpillar Technical English (CTE) developed by CMU

• AECMA (European Association of Aerospace Manufacturers)
• IBM (Easy English)
• Ericsson Telecom
• Boeing SE

White’s International Language for Serving and Maintenance (ILSAM)
CL Developments

• CL for Technical Documentation
 – Caterpillar Technical English (CTE) by KANTOO (CMU)
 – AECMA’s Simplified English (SE)
 – Boeing Simplified English Checker (BSEC)
 – GM’s Controlled Automotive Service Language (CASL)
 – Easy English (IBM)
• Simple English Wikipedia
 – http://simple.wikipedia.org/wiki/Main_Page
 – Written in Basic English (Ogden)
 – For learners of English
CL Checking

- Aids an author in determining whether a text conforms to a particular CL
 - Verify all words & phrases are approved
 - Verify all writing rules are obeyed
 - May offer help to the author when words or sentences not in the CL are found
CL for Machine Translation

• Technical Translation
 – Large segment of translation market
 – Documentation for complex products (e.g., consumer electronics, computer hardware, heavy machinery, automobiles, etc.)
 – Involves large, specialized vocabulary
 – Writing style may be complicated

• Controlled language reduces ambiguity and complexity while increasing source text quality
Designing a Controlled Vocabulary and Grammar for Machine Translation (CTE development by CMU)
Designing Controlled Vocabulary

• Restrict vocabulary size and meaning
• Most useful way to limit ambiguity of input sentences
• Key to improve the accuracy of translation
Encoding the Meanings of Vocabulary Items

• Limit Meaning per Word/Part of Speech Pair
 – Helps to reduce the amount of ambiguity

• Encode Meanings Using Synonyms
 – Finding separate, synonymous terms
 – Encode them in the lexicon
 – Synonymous terms are marked in the lexicon
 – Used in support of on-line vocabulary checking
Encode Truly Ambiguous Terms

• When a term must carry more than one meaning in the domain
• Encode in separate lexical entries
• Resulting output structure will be ambiguous
• Lexical disambiguation by machine or by author
Designing a Controlled Grammar

- What is CL used for?
 - Authoring without CL checker?
 - Authoring with CL checker?
 - Translating with MT?
 - Translating without MT?

- What types of constraints are needed?

- Design focus: to reduce ambiguity
Problematic Structures
(from CTE Specification by CMU)

• Use of participial forms
 (such as -ing and -ed)
 – Used in a subordinate clause without a subject
 “When starting the engine…”
 – Reduced relative clauses
 “the pumps mounted to the pump drive”
Problematic Structures [2]

• Verb Particles “turn on” → “start”
• Coordination of Verb Phrases “extend and retract the cylinders”
• Conjoined Prepositional Phrases “pieces of glass and metal”
• Quantifiers and Partitives “repeat these steps until none are left”
Problematic Structures [3]

• Coordinate Conjunction of S (conjuncts must be the same type)

• Adjoined Elliptical Modifiers
 “if necessary”, “if possible”, “as shown”, etc.

• Punctuation - rules for consistency
 – use of comma, colon, semi-colon
 – quotation marks
 – parentheses
Problematic Structures [4]

• Relative Clauses - should be introduced by relative pronouns

• Subject gap relative clause
 “The service man can determine the parts which are at fault”

• Object gap relative clause
 “The parts which the service man orders”
Deployment Issues for CL

• CL cannot be too strict
• Author usability and productivity are important for deployment
• Expressiveness -- Balance vocabulary size vs. complex grammatical expressions
• Productivity of authoring vs. Post-editing
Deployment Issues for CL (2)

• Controlled Target Language Definition for MT
 – Translated documents at the same stylistic quality level as the source documents
 – Set appropriate expectations about translation quality
 – Controlled language specification for TL
 – Produces more useful aligned corpora for MT/TM
Deployment Issues for CL (3)

• Controlled Language Maintenance
 – Need to update the terminology and grammar
 – Requires a well-defined process that includes the customer / user:
 • Problem reporting
 • Initial screening of the problems
 • Process monitoring and quality control
 • Support rapid terminology and grammar updates for source and target languages
Success Criteria for CL Deployment

• Highly-Trained Authors
• Use of Controlled Language Checker
• Technical Domain
• Translation for Dissemination
Evaluating the Use of Controlled Language
Benefits of CL

• Improved consistency of writing
• Increased re-use of documents
• Improved authoring quality
 – value of writing guidelines, term management
 – value of standardized authoring
 – improved quality / consistency of training
Benefits of CL

• Useful for reducing ambiguity

• Ambiguity Test:
 – Average # of syntactic analyses per sentence dropped from 27.0 to 1.04
 – 95.6% have a single meaning representation
 – Lexical constraints achieve the largest reduction in ambiguity

• Improve the quality of translation output
Comparative Evaluation of 4 Machine Translation Systems

Laser Printer User Guide

English to Spanish

KANT*

X*

Y

Z

% Heavy Postediting

% Minimum Postediting

% Fully Acceptable

% Identical to Human Translation

*These systems were customized with domain-specific terminology
CL Challenges

- Writing may become more time-consuming
- An additional verification step is required
- Developing a CL may be costly
- For writers and translators, style is more satisfying than productivity, consistency, simplicity, ...
- For end users, simplicity and clarity are a top priority
- CL use must be evaluated carefully
CL in the Real World

• Software performance
 (shouldn’t impact on author productivity)

• Author commitment
 (writing well vs. “getting it to pass”)

• Organizational commitment
 (publishing deadlines vs. CL compliance)
Specification vs. Coverage

Sentences in CL Specification

- False Negatives: (proper CL, rejected by checker)

Sentences Accepted by Checker

- False Positives: (not CL, accepted by checker)
CL is Justified When ...

• Benefits a large document volume
• Documents are hierarchical, reusable
• Checking well-integrated with document production system
• Controlled source reduces cost of translation to multiple target languages
Questions?